环形链表(十七)

一、题目描述

这是 LeetCode 上的第一百四十一题:环形链表,难度为 简单

Tag:「哈希表」、「链表」、「双指针」

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false 。

示例 1:

image.png

1
2
3
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

image.png

1
2
3
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

image.png

1
2
3
输入: head = [1], pos = -1
输出: false
解释: 链表中没有环。

提示:

1、链表中节点的数目范围是 [0, 104]

2、-10^5 <= Node.val <= 10^5
3、pos 为 -1 或者链表中的一个 有效索引 。

二、解题思路

本题我们使用两种解法:

1、哈希表

2、快慢指针

2.1、法一:哈希表

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
public class Solution {
public boolean hasCycle(ListNode head) {
Set<ListNode> seen = new HashSet<ListNode>();
while (head != null) {
if (!seen.add(head)) {
return true;
}
head = head.next;
}
return false;
}
}

复杂度分析:

1、时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。

2、空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

2.2、法二:快慢指针

本方法需要读者对龟兔赛跑算法有所了解。

假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一慢。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。

代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Solution {
public boolean hasCycle(ListNode head) {
if (head == null || head.next == null) {
return false;
}
ListNode slow = head;
ListNode fast = head.next;
while (slow != fast) {
if (fast == null || fast.next == null) {
return false;
}
slow = slow.next;
fast = fast.next.next;
}
return true;
}
}

复杂度分析:

1、时间复杂度:O(N),其中 N 是链表中的节点数。

当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。

当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。

2、空间复杂度:O(1)。我们只使用了两个指针的额外空间。

三、总结

本道算法题难度为简单,我们使用了哈希表和快慢指针两种方式进行了求解

好了,本篇文章到这里就结束了,感谢你的阅读🤝


环形链表(十七)
https://sweetying520.github.io/2022/08/21/A17-环形链表(十七)/
作者
sweetying
发布于
2022年8月21日
许可协议